среда, 9 декабря 2015 г.

Об электронных приборах работавших при низких температурах в 1928г

читайте здесь о приборах для сверхпродимой техники-http://henadzifilipenka.blogspot.com.by/

вторник, 1 сентября 2015 г.

В квантовой механике

В квантовой механике по умолчанию в каждом последующем элементе заряд ядра увеличивается в его центре на единицу и идет заполнение электронами spdf-конфигураций. У нас заряд ядра расположен на поверхности, т.к. число протонов и число нейтронов в ядре таковы, что на поверхности ядра должны быть протоны и нейтроны ,а внутри только нейтроны, то есть на поверхности ядра образуется некая оболочка. Кроме того протоны должны отталкиваться, а также их притягивает электронная шуба. Вопрос можно ли считать в расчетах ядро точкой и до каких пор?

понедельник, 31 января 2011 г.

 


in Russian please see at:

Филипенко Г.Г.
К вопросу о металлической связи в плотнейших упаковках химических элементов

Оригинал: http://lib.izdatelstwo.com/Papers/1.174.pdf

суббота, 9 августа 2008 г.

Введение в физику твердого тела.

Электроны проводимости вносят низкий вклад в теплоемкость металла(закон Дюлонга-Пти).Теоретический же расчет по модели Друде показывает,что вклад электронов в теплоемкость должен быть значительным. Атомы металлов плотно упакованы, но не в один, а в несколько типов упаковок - кристаллические решетки. Значит кроме плотной упаковки, при формировании кристаллической решетки металла, играют роль также и химические свойства атомов (атомных остовов). Металлическая связь объясняется объединением нескольких внешних электронов атомов металла в общей, для этих электронов, зоне проводимости. Существование зоны доказано в известном опыте, когда возникал кратковременный ток при торможении предварительно раскрученной катушки, а число электронов проводимости определено из опытов Холла. Как определить “ химические” свойства атомного остова? Для этого определим число гибридных орбиталей атомного остова, окруженного и притягиваемого зоной проводимости. У алмаза плотность упаковки атомов в кристаллической решетке равна 34 процентам, а координационное число (число ближайших атомов для центральноизбранного) равно 4. На одну гибридную орбиталь атома алмаза приходится 34 разделить на 4 равно 8,5 процентов.По аналогии для атома натрия 68 разделить на 8 равно 8,5 процентов.Отсюда число гибридных орбиталей для атомов плотнейших упаковок будет равно 74 разделить на 8,5 равно9 шт. (орбиталей). Изложено в работе “К вопросу о металлической связи в плотнейших упаковках химических элементов”

http://sciteclibrary.ru/eng/catalog/pages/5216.html

http://sciteclibrary.ru/eng/catalog/pages/5216.html (inEnglish)

Электроны внешних оболочек или подоболочек сначала заполняют гибридные орбитали, а оставшиеся электроны размещаются в зоне проводимости. Предположительно, в реальном пространстве, зона проводимости должна находится в районе поверхности ячейки Вигнера-Зейтца. Грубо, она напоминает собой пчелиные соты. Поэтому электроны проводимости вносят низкий вклад в теплоемкость металла, т.к. они по сути находятся в пространстве двумерном со сложной поверхностью. Здесь ошибка Друде. А периодичность для электрона проводимости в кристалле связана не столько с постоянной решетки , сколько со стереометрией гибридных (валентных)орбиталей атомных остовов. Смотри осциляции в опытах де-Гааза-ван-Альфена по исследованию поверхности Ферми. С учетом вышеизложенного ясно, что механизмы заполнения и расчетов электронных уровней для атомных остовов и для зоны проводимости должны быть различными. Положительным в статье видится то, что расчеты свойств материалов можно вести сразу для химического элемента, а не для пустого куба Борна-Кармана. Все это наверное диковато для квантового механика , так будем терпимы к инакомыслящим.

сверхпроводимость в монокристаллах металлов

Почему решили связать появление сверхпроводимости с тепловыми колебаниями атомов решетки? Потому, что материалы изотопов элемента имели разные температуры перехода в сверхпроводящее состояние. Конечно такая зависимость есть но она незначительна. Сверхроводимость не зависит от типа решетки. Вокруг сверхпроводника ниобия в таблице элементов много проводников, но не сверх. А тепловые колебания их атомов практически такие же. Почему же у других металлов сверхпроводимость не обнаруживается? Тепловые колебания атомов не главный механизм сверхпроводимости! Проводимость конечно зависит от температуры. Но у меди, серебра почему-то при самых низких температурах сверхпроводимость не наблюдается, а у проводника ниобия, который проводит значительно хуже меди и серебра-сверхпроводимость есть. Есть она и у более тяжелого свинца с типом кристаллической решетки меди. Значит не тепловые колебания главные здесь, а какие-то процессы в зоне проводимости. Для их рассмотрения необходимо знать число электронов, отдаваемое каждым атомом решетки в зону проводимости. Авторы БКШ утверждают, что в сверхпроводимости участвует каждый десятитысячный электрон , а согласно теории твердого тела в простой проводимости участвует от одного до примерно трех электронов от атома или грубо каждый десятый или сотый электрон. Тем не менее токи сверхпроводимости значительно больше токов обычной проводимости! Что-то происходит с электронами в зоне проводимости! Задача поставлена. Зона проводимости представляется мне -поверхность ячейки Вигнера-Зейтца,которая располагается между атомами кристаллической решетки. А больше электрону проводимости и негде находиться, как только на этой поверхности. При переходе в сверхпроводящее состояние в зоне проводимости электроны должны образовать коллектив или стать зависимыми друг от друга. Значит в зоне проводимости число электронов отданное атомом должно быть значительным по сравнению с медью, никелем или серебром,которые не сверхпроводники. Число электронов проводимости в металлах-элементах приводится в работе-http://kristall.lan.krasu.ru/Science/publ_grodno.html У ванадия,ниобия и тантала по 5 электронов проводимости на атом и соответственно температуры переходов Тс=5,30...9,26 и 4,48К. У; гафния, титана и циркония по 3 электрона, а Тс=0,09...0,39 и 0,65К. Посмотрим таблицу элементов справа-там свинец, олово- по 4-5 электронов и алюминий, галий, индий, талий у которых по 2-3 электрона, а Тс=1,196...1,091...3,40...2,39 соответственно. У свинца и олова Тс=7,19 и 3,72 соответ- ственно. Что и требовалось доказать. Так как зона проводимости поверхность, а электроны обладают спинами, то по моему организация электронов проводимости в коллектив идет посредством взаимодействия через спины. -------------------------------------------------------------------------------- Я здесь хочу сказать, что электроны проводимости конечно как-то объединяются, но только не так как в БКШ, когда они начинают заигрывать на расстоянии в несколько тысяч атомов между которыми находятся еще больше электронов и после этого "спариваются". Ясно и то,что число энергетических уровней в зоне проводимости не равно числу электронов проводимости (как в квантовой механике), а составляет величину равную числу электронов проводимости от атома кристаллической решетки, т.е. 1-5 или чуть больше. -------------------------------------------------------------------------------- Электроны проводимости вносят низкий вклад в теплоемкость металла (закон Дюлонга-Пти). Теоретический же расчет по модели Друде показывает,что вклад электронов в теплоемкость должен быть значительным. Предположительно, в реальном пространстве, зона проводимости должна находится в районе поверхности ячейки Вигнера-Зейтца. Грубо, она напоминает собой пчелиные соты. Поэтому электроны проводимости вносят низкий вклад в теплоемкость металла, т.к. они по сути находятся в пространстве двумерном со сложной поверхностью. Здесь ошибка Друде. А периодичность для электрона проводимости в кристалле связана не столько с постоянной решетки, сколько со стереометрией гибридных (валентных) орбиталей атомных остовов. Смотри осциляции в опытах де-Гааза-ван-Альфена по исследованию поверхности Ферми.
• Эффект Джозефсона ? Появилось много сообщений о сопутствующих сверхпроводимости магнитных явлениях. Поэтому представляется интересным расположить между двумя сверхпроводниками тонкий слой из ферромагнетика (железа например) или из диамагнетика-меди и проанализировать результат. Не сделает ли какой-нибудь из этих сэндвичей более высокой Тс?
• Повышение Тс. Согласно выше изложенного. Для повышения Тс в металлах могу предложить следующее. Отрицательно зарядить металлический образец и испытать его.